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We develop a theory for graphene magnetotransport in the presence of carrier spin polarization as induced,
for example, by the application of an in-plane magnetic field �B� parallel to the two-dimensional graphene
layer. We predict a negative magnetoresistance ��B2 for intrinsic graphene, but for extrinsic graphene we find
a nonmonotonic magnetoresistance which is positive at lower magnetic fields �below the full spin polarization�
and negative at very high fields �above the full spin polarization�. The conductivity of the minority spin band
�−� electrons does not vanish as the minority carrier density �n−� goes to zero. The residual conductivity of �−�
electrons at n−=0 is unique to graphene. We discuss experimental implications of our theory.
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I. INTRODUCTION

Carrier transport properties of gated two-dimensional
�2D� graphene monolayers have been of active current
interest,1–7 both for fundamental and technological reasons.
From a fundamental perspective, understanding the mecha-
nisms controlling graphene conductivity in experimental
samples is of obvious importance. Such an understanding
could lead to improvement in graphene mobilities, which, in
turn, would help its eventual technological applications. The
chiral linear dispersion of graphene makes it particularly im-
portant that we understand the operative resistive scattering
mechanisms. The well-understood scattering theories of
parabolic 2D semiconductor structures do not directly apply
to graphene because of its peculiar band dispersion described
by the relativistic Dirac-Weyl equation for massless fermi-
ons. In this paper we predict that the application of an exter-
nal magnetic field parallel to the 2D graphene layer could
lead to an interesting magnetoresistance behavior in the low-
density and high-mobility graphene samples, providing sig-
nificant qualitative insight into its resistive scattering mecha-
nisms.

The physics underlying our predicted parallel-field
graphene magnetoresistance phenomenon is elegantly
simple: the applied field spin polarizes the graphene carriers
through the Zeeman effect, dramatically affecting the carrier
density of states due to the lifting of the spin degeneracy,
which then leads to a strong modification of the effective
disorder scattering, thereby tuning the system resistivity. The
key point here is that the parallel magnetic field couples only
to the spin degree of freedom since, the 2D graphene layer
being essentially a zero-thickness system, there is no
magneto-orbital coupling to take into account as long as the
applied magnetic field is strictly parallel to the 2D plane.
This is different from the situation in the corresponding para-
bolic band qausi-two-dimensional semiconductor structures
with finite widths8 where both Zeeman coupling9,10 and
magneto-orbital coupling10 play significant roles in determin-
ing the parallel-field magnetoresistance.

Before describing the details of our theory and results, we
start by providing a simple physical picture to motivate our
predicted parallel-field-induced graphene magnetoresistance,
which could be either positive or negative depending on the

situation. Assuming that the only effect of the parallel mag-
netic field is to spin polarize graphene carriers, we ask how
such a continuously tunable �by changing B� carrier spin
polarization would affect the strength of disorder scattering
by modifying the fundamental graphene parameters, namely,
the Fermi wave vector �kF� and the Thomas-Fermi �TF�
screening wave vector �qTF�, both of which depend on the
spin degeneracy factor gs. Since kF�gs

−1/2 and qTF�gs
1/2, we

note that the Fermi �TF screening� wave vector increases
�decreases� as the system becomes spin polarized �with gs
decreasing from 2 to 1� due to the application of the parallel
field. Taking into account also the modification of the density
of states �DF� due to spin polarization, we discuss below how
the tuning of the carrier spin polarization in gated graphene
will affect the transport relaxation time, �,7,11 for various
types of background disorder.

Let us now consider the various types of resistive scatter-
ing potential V�q�, which may be operational in graphene
layers. For unscreened short-range white-noise disorder, V�q�
is a constant independent of the wave vector q, and as such,
the changing spin polarization would not affect the scattering
potential, which gives rise to ��kF

−1. In general, an un-
screened long-range disorder potential would have V�q�
�q−n �with n=1 being the Coulomb disorder case for the
charged impurity potential�. Using q�kF, we conclude that
the unscreened long-range disorder would effectively be-
come weaker in the presence of a finite parallel field since
spin polarization would, in general, suppress the disorder
strength by increasing kF, that is, we have ��kF

2n−1. Finally,
the 2D screened Coulomb disorder would have V�q���kF
+qTF�−1 with kF �qTF� increasing �decreasing� with the in-
creasing spin polarization under the applied parallel field,
and as such screened Coulomb disorder could either increase
or decrease in the presence of spin polarization. Remember-
ing that graphene conductivity in the Boltzmann theory is
given by ��DF�, where � and DF��gs are, respectively, the
scattering time and the density of states at the Fermi level we
conclude that if ��kF

−1 �i.e., if the disorder is independent of
spin polarization�, then ��gs, and it will always decrease
�i.e., a positive magnetoresistance� in the presence of spin
polarization. When the disorder is spin polarization depen-
dent �either through the modification of kF and/or qTF�, the
magnetoresistance could be either positive or negative. In
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particular, for the unscreened long-range disorder potential,
V�q��1 /qn, we have ��gs

1−n. Note that for the bare Cou-
lomb disorder �n=1� � remains a constant and does not de-
pend on the spin polarization, implying no magnetoresis-
tance.

Below we develop a detailed quantitative theory for the
graphene parallel-field magnetoresistance in the presence of
disorder arising from random-charged impurity centers. This
is because the screened charged impurity disorder is
widely3,5–7 considered to be the dominant scattering mecha-
nism in limiting graphene carrier mobility in currently avail-
able samples.

We find that the conductivity of intrinsic �i.e., undoped
with EF�B=0� precisely at the Dirac point� graphene in-
creases �i.e., negative magnetoresistance� with the applied
magnetic field. For extrinsic graphene we find a positive
magnetoresistance for B�Bs due to the magnetic field in-
duced changes in the screening properties of graphene,
where Bs is the field needed for full spin polarization, and for
B�Bs we find a negative magnetoresistance due to the de-
population of electrons in the valence band. This negative
magnetoresistance in extrinsic graphene for B�Bs, arising
out of magnetic depopulation of the valence band, is the
same qualitative effect which controls the negative magne-
toresistance we find in intrinsic graphene.

The paper is organized as follows. In Sec. II the Boltz-
mann transport theory is presented to calculate 2D graphene
conductivity in the presence of parallel magnetic field. Sec-
tion III presents the results of the calculations. We conclude
in Sec. IV with a discussion.

II. THEORY

We use the Boltzmann transport theory including only the
effect of resistive scattering by random-charged impurities.7

The density of the random-charged impurity centers is the
only unknown parameter in our model, which sets the scale
of the overall resistivity without affecting the ��B� depen-
dence of interest in the problem. The Boltzmann conductiv-
ity of graphene at T=0 is given by

� = e2vF
2DF��EF�/2, �1�

where vF is the Fermi velocity, DF=gsgvEF /2	
2 �
=�vF�
is the density of states at Fermi energy �gs and gv are spin
and valley degeneracies, respectively�, ��EF��� is the trans-
port relaxation time and EF=
kF is the Fermi energy. The
relaxation time is calculated in the Boltzmann theory as11

1

��EF�
= 4	nirs

2vF

kF
�

0

1

dx
�1 − x2

��2kFx�2 , �2�

where kF is the Fermi wave vector, ni is the background
random-charged impurity density and rs=e2 /

 �
 being the
background dielectric constant� is the graphene fine-structure
constant, and ��q�=1+v�q���q� is the random-phase ap-
proximation dielectric function of the system, where v�q�
=2	e2 /
q is the electron-electron 2D Coulomb interaction
and ��q� the 2D irreducible finite wave-vector polarizability
function. When the system is spin unpolarized with a 2D

carrier density, n, the polarizability function becomes ��q�
=DFP�q /kF�,12 where

P�x� = 	1 if x � 2

1 +
	x

8
−

1

2
�1 −

4

x2 −
x

4
sin−1
2

x
� if x � 2 � .

�3�

Then the conductivity becomes

� =
e2

h

n

ni

1

2rs
2

1

I�2rs�
, �4�

where I�x� is calculated to be11

I�x� =
	

4
−

d

dx
�x2g�x�� , �5�

with

g�x� =
	

2
x − 1 + �
1 − x2
�sech−1�x� if x � 1

sec−1�x� if x � 1
� . �6�

When the parallel magnetic field is applied, the carrier den-
sities n� for spin up/down are not equal. Note that the total
density n=n++n− is fixed by the external gate. The spin-
polarized densities themselves are obtained from the relative
shifts �i.e., the spin splitting� in the spin-up and spin-down
bands introduced by the Zeeman splitting associated with the
applied field B. In this case the polarizability function be-
comes

��q� = DF
+P�q/kF

+� + DF
−P�q/kF

−� , �7�

where DF
� and kF

� are the density of states at Fermi energy
and the Fermi wave vector of spin-up �down� state, respec-
tively. Note that gv �=2 in the B=0 graphene case� is not
lifted, but the spin degeneracy, by definition, is lifted by the
in-plane field B. The usual unpolarized B=0 paramagnetic
state has kF

+ =kF
− =kF; n+=n−=n /2.

By defining the spin-polarization parameter given by �
= �n+−n−� /n we can calculate the irreducible polarizability
function in the case of unequal population of n�. Equations
�1�–�3� above apply to the �=0 unpolarized situation. In Fig.
1 we show the irreducible polarizability of the system for
different spin-polarization parameter values. For unpolarized
graphene �i.e., �=0� we have n�=n /2 and kF

�=�2	n�

=�	n=kF. In this case the polarizability ��q� is constant up
to q=2kF and then increases with q. For fully spin-polarized
system �i.e., �=1� we have n+=n and n−=0; kF

+ =�2	n
=�2kF and kF

− =0. In this case ��q� /DF increases linearly up
to q=2kF

+ with a slope �	 /8��kF /kF
+�=	�2 /16 and has a kink

at q=2kF
+. For the partially polarized system, 0���1, ��q�

has two distinct kink points at q=2kF
�.

Now we calculate the conductivity in the presence of a
parallel magnetic field for screened Coulomb disorder. In the
presence of the magnetic field the total conductivity can be
expressed as a sum of conductivities of spin up/down carri-
ers, i.e.,
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� = �+ + �−, �8�

where �� is the conductivity of the �� � spin subband, since
the two spin channels are simply parallel transport channels
as Coulomb scattering conserves the spin quantum number
and, therefore, inter-spin-channel scattering is not allowed.
The conductivities �� are given by

�� = e2vF
2DF

���EF
��/2. �9�

In calculating the scattering times ��EF
�� we have to use the

two-component polarizability given in Eq. �7�. The total car-
rier resistivity � is defined by ��1 /�.

III. RESULTS

First, we consider intrinsic �i.e., undoped or ungated, with
n and EF both being zero� graphene where the conduction
band is empty and the valence band fully occupied at B=0.
Applying a parallel magnetic field to intrinsic graphene
would cause a shift of the chemical potential from the Dirac
point, and therefore the spin-polarized �+� electrons induced
from the valence band will start to occupy the empty con-
duction band, leaving holes created in the valence band. The
situation is not dissimilar from what happens at T�0. The
created intrinsic electron density, n, is the same as the intrin-
sic hole density, p, in the valence band, and the total density
is proportional to the applied magnetic field �B�, i.e.,

n = p =
gv

16	

�



�2

, �10�

where �=g��BB �with g� is electron spin g factor and �B the
Bohr magneton� being the Zeeman energy. Since both carri-
ers contribute to the conductivity and n= p, we can calculate
the total conductivity as

� =
e2

h

n

ni

1

rs
2

1

I�2rs�
. �11�

Since n�B2, the calculated conductivity of intrinsic
graphene increases quadratically with the applied magnetic

field. Note that for this negative magnetoresistance phenom-
enon in intrinsic graphene as induced by the applied parallel
field, spin polarization itself does not play any role—the
physics is dominated by the field-induced creation of
electron-hole pairs which can then carry current.

In the case of extrinsic graphene �where EF, n�0� an
applied magnetic field produces different numbers of spin-up
�+� and spin-down �−� electrons in the conduction band �or,
for holes in the valence band� and we find

n� =
gv

4	
2 �� � �/2�2, �12�

where � is the chemical potential, which is determined by
conserving the total number of electrons, n=n++n−. Then we
have

��B� = 
�	n�1 − �2/4, �13�

where �=� /EF and EF=
kF=
�	n is the Fermi energy at
B=0 �unpolarized system�. When B=0 ��=0� we have �
=EF. We can relate the spin-polarization parameter � to the
applied magnetic field as

� = ��1 − �2/4. �14�

At �=�2 the system is fully spin polarized �i.e., �=1�. Thus,
the so-called saturation �or the spin-polarization� field for
complete spin polarization is given by Bs=�2EF / �g��B�,
which is smaller by a factor of �2 than Bs=2EF / �g��B� for a
2D parabolic band dispersion. The conductivity of the par-
tially polarized system can be calculated as

� =
e2

h

1

ni

1

2rs
2�n+

I+
+

n−

I−
� , �15�

where

I� = �
0

1

dx
�1 − x2

��2kF
�x�2 . �16�

In Fig. 2 we show the calculated resistivity, �=1 /�, as a
function of spin polarization for rs=0.85 and 2.2 which cor-
respond to graphene on SiO2 substrate and vacuum. Note
that we can represent the Fermi wave vectors as a function of
the spin polarization, kF

�=kF
�1��. The total resistivity in-

creases as the spin polarization �or magnetic field� increases
because of overall suppression of screening. At �=1 �or B
=Bs� we have

I+ =
1

�1 + 	rs/4�2 I
 rs

1 + 	rs/4
� , �17�

and as �→1

I− →
	

16

1

rs
2

n−

n+
. �18�

Thus, as �→1, n−→0 and the scattering time of spin �−�
electrons diverges as 1 /n− because ���1 / I�. This means
that the conductivity of spin �−� electrons, �−�n− / I−, is fi-
nite at �=1 even though there is no spin-down carrier. That
is, we have �−�Bs�= e2

h
n
ni

8
	 , which is independent of the inter-

0 1 2 3 4
q/k

0.5

1.0

1.5

Π
(q

)/
D

F

F

ξ=0.6

ξ=0

ξ=1

FIG. 1. �Color online� Total polarizability of the spin-polarized
system. Here �= �n+−n−� /n, DF=gvEF /	
2, and kF=�2	n /gv is
the Fermi wave vector of unpolarized system ��=0�. �=1 indicates
fully spin-polarized graphene and for the partially polarized system
we have 0���1.
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action parameter rs. This is a consequence of vanishing den-
sity of states of graphene as n→0 and the peculiarity of
graphene screening properties, i.e., the contribution of inter-
band transition to screening. We also show as an inset in Fig.
2 the calculated conductivities of each spin subband. As ex-
pected �− does not vanish as �→1. The result in Fig. 2�a�
does not depend on the carrier density at B=0. However, it is
weakly dependent on the interaction parameter rs. The maxi-
mum magnetoresistance at Bs can be calculated as

��0�
��Bs�

=
��Bs�
��0�

=
I0

I+
+

16rs
2

	
I0, �19�

where I0= I�2rs�, and is shown in Fig. 2�b�. As rs→0 we
have I0 , I+→	 /4, and the ratio becomes ��Bs� /��0�→1. As
rs→� I0→	 /64rs

2 and I+→ �16 /	2rs
2�I�4 /	�, and the ratio

becomes

��Bs�
��0�

→
	3

1024

1

I
 4

	
� +

1

4
� 1.22. �20�

Thus we always have positive magnetoresistance in extrinsic
graphene as the applied in-plane magnetic field increases
from 0 to Bs. Note also that ��Bs� /��0� has a shallow maxi-
mum at rs�0.5.

As the magnetic field increases beyond Bs, i.e., B�Bs, the
number density of spin �+� state is given by

n+ = n + p = n +
n

2

1

�2
�2

2
− 1�2

, �21�

where p is the induced hole density created in the valence
band due to the magnetic field. In Fig. 3 we show the calcu-
lated resistivity of graphene as a function of magnetic field.
A very interesting feature is the sharp decrease in resistivity
for B�Bs, which is unexpected, when compared with ordi-
nary 2D systems where the resistivity saturates �or increases�
for B�Bs.

8,10 In graphene, however, for B�Bs the calcu-
lated conductivity increases as B2. This increasing conduc-
tivity for B�Bs in extrinsic graphene has exactly the same
physical origin as the negative magnetoresistance we find for
intrinsic graphene.

IV. CONCLUSION

In conclusion, we calculate theoretically the magnetore-
sistance of graphene considering the parallel magnetic field
induced suppression of the screening of long-range Coulomb
potential. Given the nontrivial �and surprising� magnetoresis-
tive behavior of graphene we predict in a parallel magnetic
field, namely, negative magnetoresistance ���B��B2� in in-
trinsic graphene and positive magnetoresistance ���B�Bs�
�B2� as well as negative magnetoresistance ���B�Bs�
�B2� for extrinsic graphene, a question naturally arises
about the experimental observability of our predicted phe-
nomenon. We believe that our predictions should be observ-
able at low temperatures ��1 K� in high-mobility graphene
samples provided reasonable values of spin polarization
�e.g., �=0.5 or above� are achieved. Using g�=2 for
graphene we find ��0.12B meV, where B is measured in
tesla. This leads to Bs�T��140�ñ, where ñ is the graphene
carrier density measured in unit of 1010 cm−2. Thus, for n
=108 cm−2, Bs�14 T, which should enable a direct verifi-
cation of our theory close to the charge neutrality point. We
anticipate g� to be enhanced by electron-electron interaction
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FIG. 2. �Color online� �a� Calculated resistivity ���� /��0� as a
function of the spin polarization for rs=0.85 �solid lines� and 2.2
�dashed lines�. Here ��0� is the resistance at B=0. Inset shows the
conductivities of each spin state. Note that the conductivity �− does
not vanish at �=1 �or B=Bs�. �b� Magnetoresistance at Bs,
��Bs� /��0�, as a function of interaction parameter rs. �Note that rs

�2.2 is not a physical regime.�

0.0 0.5 1.0 1.5
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1.2

1.3
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B
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ρ(
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s

r =2.2s
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FIG. 3. �Color online� Calculated resistivity ��B� /��0� of
graphene as a function of the in-plane magnetic field for rs=0.85
and 2.2. Here, Bs is the saturation �or the spin polarization� field for
complete spin polarization. For B�Bs the holes are created in the
valence band due to the magnetic field.
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effects, perhaps as much as by a factor of 2 for rs=2.2, and
therefore the necessary magnetic field values may be a factor
2 lower for free-standing graphene in vacuum than on a sub-
strate. It seems that a verification �or falsification� of our
predicted magnetoresistance behavior should be possible in
high-mobility suspended graphene samples at low carrier
densities.13,14 However due to the inhomogeneity of electron-
hole puddles near the Dirac point7 the predicted behavior of
intrinsic graphene may not be observable in experiments.
The continuous improvement in the quality of graphene

samples13,14 indicates that our predicted magnetoresistance
behavior should be experimentally observable, perhaps
somewhat away from the Dirac point, reasonably soon in the
future at magnetic field values 15–20 T if the screened
charged impurity scattering is, indeed, the main resistive
scattering mechanism in graphene.

ACKNOWLEDGMENT

This work is supported by the U.S.-ONR.

1 See, for example, the special issues of Solid State Communica-
tions 143, 1–125 �2007� and Eur. Phys. J. Special Topics 148,
1–181 �2007�; A. H. Castro Neto, F. Guinea, N. M. R. Peres, K.
S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 �2009�.

2 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Sci-
ence 306, 666 �2004�.

3 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature �Lon-
don� 438, 201 �2005�; Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao,
S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P.
Kim, Phys. Rev. Lett. 99, 246803 �2007�.

4 C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R.
Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First,
and W. A. de Heer, J. Phys. Chem. B 108, 19912 �2004�.

5 J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and
M. Ishigami, Nat. Phys. 4, 377 �2008�.

6 T. Ando, J. Phys. Soc. Jpn. 75, 074716 �2006�; V. V. Cheianov
and V. I. Fal’ko, Phys. Rev. Lett. 97, 226801 �2006�; K. Nomura
and A. H. MacDonald, ibid. 96, 256602 �2006�.

7 E. H. Hwang, S. Adam, and S. Das Sarma, Phys. Rev. Lett. 98,
186806 �2007�.

8 R. Pillarisetty, Hwayong Noh, E. Tutuc, E. P. De Poortere, D. C.
Tsui, and M. Shayegan, Phys. Rev. Lett. 90, 226801 �2003�; E.
Tutuc, E. P. De Poortere, S. J. Papadakis, and M. Shayegan, ibid.
86, 2858 �2001�; J. Yoon, C. C. Li, D. Shahar, D. C. Tsui, and
M. Shayegan, ibid. 84, 4421 �2000�; T. Okamoto, K. Hosoya, S.
Kawaji, and A. Yagi, ibid. 82, 3875 �1999�; K. M. Mertes, D.
Simonian, M. P. Sarachik, S. V. Kravchenko, and T. M. Klap-
wijk, Phys. Rev. B 60, R5093 �1999�.

9 V. T. Dolgopolov and A. Gold, JETP Lett. 71, 27 �2000�; I. F.
Herbut, Phys. Rev. B 63, 113102 �2001�.

10 S. Das Sarma and E. H. Hwang, Phys. Rev. Lett. 84, 5596
�2000�; Phys. Rev. B 72, 205303 �2005�.

11 E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 195412
�2008�.

12 E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418
�2007�.

13 K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim,
Phys. Rev. Lett. 101, 096802 �2008�.

14 X. Du, I. Skachko, A. Barker, and Y. Andrei, Nat. Nanotechnol.
3, 491 �2008�.

GRAPHENE MAGNETORESISTANCE IN A PARALLEL… PHYSICAL REVIEW B 80, 075417 �2009�

075417-5


